
Anatomy of a custom
Dplug widget
How do widget work?
Which callbacks to answer?
When to call setDirtyWhole? etc.

Meeting
Mar 8th 2022

Plug-in UIs are important

● It highlights the unique features of your plug-in.
If the UI doesn’t say loudly that a feature is interesting,
then it will be considered not-new.

● Custom widgets brings your UX desire to reality.
 “I have a dream. I want to set both Ratio and Threshold at the same time”

● Dplug allows Scriptable + Resizeable + PBR UI

2022 limitations: not DPI aware on Mac, no dynamic widget creation.

Let’s build that widget : a stereo width control

When dragged

When mouse is over

Rest position

It takes 183 LOC.

Let’s build that widget : a stereo width control

When dragged

When mouse is over

Rest position

It takes 183 LOC.

NOT THAT TRIVIALTO CODE.

Let’s go over those 183 lines, one by one.

You should need to import that class name from Wren. The name don’t _have_ to
start with UI, I like to do that for UIElement derivatives.

won’t be
derived

personal canvas
helpers functions

simple UI vs DSP
communication

easiest way to
draw widget

root class of all UI widgets

receives
parameter
changes

THE HEADER

Expose what you want for Wren to see.

Tip: if you draw something complicated, use temporary @ScriptProperty that are not
“styling” but content. (eg: control points in a curve)

THE SCRIPTED PROPERTIES

THE CONSTRUCTOR & DESTRUCTOR

Register and
unregister the
widget
as a Listener for
each parameter
that will change
the graphics when
changing.

Stereo width parameter The “section enable” BoolParameter

DO NOT FORGET
TO BALANCE CALLS:

- addListener
- removeListener

Flags (see next slides)

WHAT THE UIELEMENT FLAGS MEAN

flagRaw ⇔ onDrawRaw is called.
This widget can write stuff on the Raw level, always on top of the PBR
level. Suitable for 60FPS.

flagAnimated ⇔ onAnimate is called
Typically used to request a redraw if things have changed.

flagPBR ⇔ onDrawPBR is called
This widget can write stuff on the PBR level.
This is not suitable for 60FPS display, so this sort of widget has to call
setDirty infrequently.

DRAWING PART 1

Raw texture, cropped to the widget
position. Pixel (0, 0) is top-left of widget.

You can modify only inside the
dirtyRects. Their position are relative
to rawMap (local coordinates).

Get widget size
by reading position().
This is the “world” position,
not the position in rawMap.
Only worthwhile for width
and height.

Repeat cropped
drawing for each dirtyRect
since it’s generally 1 or 2 rects. translate() call => so that you can draw in local coordinates.

DRAWING PART 1

This allows to:
1. Have less work to do

in reflow()
(eg: fontSizePx)

2. Resize things
interactively with
right-click in debug
mode.

3. Easier to scale UI.

Pro-tip = Have key metrics in the widget depend
on the widget size (width and height).

>>> AVOID PIXEL QUANTITIES IF YOU CAN! <<<

DRAWING PART 2

The drawing itself.

Using @ScriptProperty values instead
of hardcoded values will make the widget
more reusable.

Called when the parameter is
changed by UI interaction OR host
automation.

Called when the UI calls
beginParamEdit
/endParamEdit() .

=> call setDirtyWhole since DAW
automation wouldn’t redraw else.

=> we call setDirtyWhole there too, unless you do it
when you start dragging, or stop dragging. Perhaps not necessary in that widget.
Most often this can be left empty because you will have onMouseClick / onBeginDrag / onStopDrag…

LISTENING TO PARAMETER CHANGES

Important: A widget is not redrawn unless you call setDirty[Whole].

SETDIRTY AND SETDIRTYWHOLE

Tip: Partial rectangles are generated anyway when another window pass
above your plug-in, so you have to handle it anyway. And that’s why
dirtyRects exists.

You can optimize rendering of a large widget by redrawing only the
portion of its position rectangle, that has changed.

 setDirty vs setDirtyWhole()

Redraws a single rectangle area,
given in local coordinates. And the
widgets beneath it.

Redraws the whole position rectangle,
and the widgets beneath it.

RESPONDING TO A MOUSE CLICK

VERY IMPORTANT
Returning true = Start a drag operation. Window captures mouse until release.
 If you don’t need to do anything while mouse dragging, you still have to return true
to consider the click handled.
Returning false = Consider the click unhandled. The event passed down to children etc.

Parameter reset code. Can’t set parameters outside of a balanced beginParamEdit/endParamEdit pair.

>>>> onMouseClick <<<<

RESPONDING TO A MOUSE DRAG Part 1

A mouse drag happens whenever onMouseClick returned true.

Tip: eventually use a state machine to know which parameter you are dragging,
it is useful for controls that have several points to drag.

Dragging has a start and an ending,
it can be used to call balanced pairs
of beginParamEdit()/
endParamEdit()

MAKE SURE THOSE CALLS ARE

BALANCED
WHATEVER HAPPENS,
AND IN WHICHEVER CALLBACK

RESPONDING TO A MOUSE DRAG Part 2

Slider logic
like UISlider

SHIFT+ clic
= finetune

Divide by height
to be as
sensitive at
every plugin
size.

Use mouse displacement dx and dy
(not as precise to use x and y, but can be done)

Using dx/dy
needs to read
current
parameter
value.

WHO IS CALLED?

within dragging:
=> onMouseDrag

without dragging
=> onMouseMove

Called when mouse
enters the widget.
Here we trigger redraw
because it may trigger
selection highlight.

Also called here because it may loose selection highlight.
onMouseMove may not be generated when the mouse exits the widget!
=> Use onMouseExit if you have a visual change just by hovering the mouse.

RESPONDING TO MOUSE ENTRY/EXIT

Must hold its own Canvas, because several widget can be drawn
simultaneously if they don’t intersect. Don’t share Canvas instances.

Hold parameters
it reads/write values from

Slider logic taken
from UISlider

FUTURE

● Documenting all that a bit more.

● 3 possible return values for onMouseClick

○ Event consumed, start Dragging.
○ Event consumed, do not start Dragging.
○ Event not consumed.

Questions?

